

Profiles, Sections \& Rods, Bars, Tubes

Dur Passian. Innovation.

The processing of aluminium into state-of-the-art semi-finished products is our business and our passion. For almost two centuries we have been guided by innovation, development orientation. flexibility and universality.
Our sustainable business growth, continuous modernisation and expansion of business capacities, wide range of products and alloys represent the guarantee that, with us, you will get a reliable business partner.

Extrusion is our core production group. In our three plants, we annually produce over 77,000 tons of semi-finished products: extruded and drawn bars, rods, tubes, as well as standard and custom-made rods, tubes, as well as standard and custom-made
profiles. Our particular strength lies in our solutions and products for the automotive industry, for which we manufacture products for energy absorption and basic car safety components, as well as for the construction, transport and electrical sectors. Our satisfied customers and the numerous quality

Mechanical Equipment

Own foundry, with a total capacity of 180,000 tonnes per year (capacity for the needs of extrusion of over 90,000 tonnes) gives us a lot of advantages on the market. It allows us flexible production and development of new alloys and echnologies. However, to fill the capacity on the extrusion press we annually process around 25,000 tonnes of material from external suppliers. Therefore we produce over $\mathbf{7 7 , 0 0 0}$ tonnes of finished extruded products per year on seven extrusion presses as described below.

BVQI SINCE 1992

BVQI SINCE 2000

BVQI SINCE 2000

BVQI SINCE 2004

Profiles
and Sections

Dimensional Limitations of Profiles and Sections

Rods, Bars and Tubes

Fields of use of rods, bars, tubes and proftles

- automotive \& aircraft industries
- machine bulding
- transportation
- interior design
- electrical industry
- civil engineering

In accordance with international standards, Impol produces extruded and drawn rods and tubes in all standard dimensions. Hard alloys, which are not so easily worked or even difficult to work, predominate. Specia attention is given to stress-free states of materials, to free-cutting alloys and to rods for forging.

After the production process, the products can be 100% ultrasonically controlled on customer's demand.

Available Dimensions of Impal Products

ROUND RODS AND BARS

EXTRUDED	$\mathbf{d}[\mathrm{mm}]$	length $[\mathrm{m}]$	
Alloys series $6 \times x x$ an $1 \times x x$	$755 / 3$	$8.0-180.0$	$2.0-6.0$ Depending on dimension and alloy or based on customer's requirements. Applies to other series of alloys.
Other series of alloys	$755 / 3$	$20.0-180.0$	2.0-6.0 Depending on dimension and alloy or based on customer's requirements.

DRAWN

Alloys series 1xxx, 6xxx and 2011	$754 / 3$	$5.5-76.2$	$2.0-\max 4.5$ or based on customer's requirements

EXTRUDED
length Lm

Depending on dimension and alloy or based on customer's requirements.

Other series of alloys	$755 / 4$	$20.0-140.0$	$2.0-6.0$ Depending on dimension and alloy or based on customer's requirements.

DRAWN

Alloys series $6 \times x x$ and 2011	$754 / 4$	$6.0-63.5$	$2.0-\max 4.5$ or based on customer's requirements

Other series of alloys	$754 / 4$	$7.0-63.5$	$2.0-6.0$

EXTRUDED	$\mathbf{s}[\mathrm{mm}]$	length $[\mathrm{m}]$	
Alloys series $6 \times x x$ an $1 \times x x$	$755 / 6$	$8.0-120.0$	$2.0-6.0$ Depending on dimension and alloy or based on customer's requirements.
Other series of alloys	$755 / 6$	$20.0-120.0$	$2.0-6.0$ Depending on dimension and alloy or based on customer's requirements.
DRAWN	$754 / 6$	$6.0-63.5$	2.0 - max 4.5 or based on customer's requirements
Alloys series 6xxx and 2011	$754 / 6$	$7.0-63.5$	$2.0-\max 4.5$ or based on customer's requirements
Other series of alloys			

SEAMLESS TUBES

SEAMLESS TUBES		$\mathbf{d}_{\mathbf{e}}[\mathrm{mm}]$	$\mathbf{d}_{\mathbf{i}}[\mathrm{mm}]$	$\mathbf{s}[\mathrm{mm}]$	length $[\mathrm{m}]$
Extruded	$755 / 7$	$25.0-90.0$	$16.0-74.0$	$2.5-25.0$	$2.0-4.5$ or based on customer's requirements
Drawn					
	$754 / 7$	$25.0-76.2$	$16.0-74.0$	$2.5-25.0$	$1.0-4.5$ or based on customer's requirements (min. $1.5 \mathrm{~kg} / \mathrm{m}$ and max. $9 \mathrm{~kg} / \mathrm{m})$

CHAMBER EXTRUDED TUBES	$\mathbf{d}_{\mathbf{e}}[\mathrm{mm}]$	$\mathbf{s}[\mathrm{mm}]$
Extruded	$755 / 8$	$10.0-250.0$
		$1.5-25.0$
		Square tubes are avaliable from
	10×10 to 220×220.	

FERRULES - OVAL TUBES

Comparative Table of Materials

- Alloys for forging
- Free-cutting alloys
- Other alloys

We can also accommodate customer's special requirements other than standard ones. However, only if the existing technology and machinery facilitate the above.

ALLOYS FOR FORGING

2XXX	EN AW-2014	
	EN AW-2014A	
	EN AW-2017A	
	EN AW-2024	
	EN AW-2618A	
6XXX	EN AW-6110A	
	EN AW-6082 mod.	EN AW-6082
	EN AW-6056	AA 6111
	F40, F42, F45	F32, F34, F36, F38
7XXX	EN AW-7010	
	EN AW-7020	
	EN AW-7050	
	EN AW-7150	
	EN AW-7075	
	AA-7055	
	EN AW-7049A	
	EN AW-7175	
OTHER	EN AW-4032	
	EN AW-5754	

FREE-CUTTING ALLOYS

	2xxx	6XXX
Pb max. 0.05 (Sn Bi)	AA-2041	EN AW-6023
	AA-2044	AA-6028
		EN AW-6262A
		AA-6026 mod. (Sn, Pb free)
Pb max. 0.40 (8i)	AA-2028A	AA-6064
	AA-2011	EN AW-6026
		AA-6012
with Pb	EN AW-2011	EN AW-6012
	EN AW-2007	EN AW-6262
	EN AW-2030	

EN AW-6262A is a direct replacement for EN AW-6262
EN AW-6064 is a direct replacement for EN AW-6262
A-2041 is a direct replacement for AA-2011
A-2044 is a direct replacement for AA-2007 / AA-2030
A-2028A is a direct replacement for AA-2007 / AA-2030
EN AW-6023 is a direct replacement for EN AW-6012 and EN AW-6262
EN AW-6026 is a direct replacement for EN AW-6012 and EN AW-6262
AA-6028 is a direct replacement for EN AW-6012 and EN AW-6262

1xXx	EN AW-1050A	
	EN AW-1070A	
	EN AW-1350	
2XXX	EN AW-2014A	EN AW-2618A
	EN AW-2017A	EN AW-2014
	EN AW-2024	EN AW-2017
	EN AW-2028A	
3 XXX	EN AW-3003	
	EN AW-3103	
4XXX	EN AW-4032	
	EN AW-4032 mod.	
5XXX	EN AW-5019	EN AW-5754
	EN AW-5051A	
	EN AW-5083	EN AW-5051 (Ferule)
6XXX	EN AW-6005	EN AW-6063
	EN AW-6005A	EN AW-6082
	EN AW-6005B	EN AW-6101
	EN AW-6060	EN AW-6101A
	EN AW-6061	EN AW-6101B
7XXX	EN AW-7003	EN AW-7049A
	EN AW-7010	EN AW-7050
	EN AW-7020	EN AW-7075
	EN AW-7021 mod.	EN AW-7175
	EN AW-7022	

